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Background/motivation

� Pulsed discharges are promising for advanced etching applications 

⇒ necessity to understand the basic plasma phenomena involved when rf power is 
time-modulated

� Pulsed discharges are also used to probe radicals' kinetics: by measuring the 
rise/decay rate of the radical’s density in the afterglow ⇒ surface reactivity

In afterglow: Cl2 density rises 
due to Cl atoms recombination on 

reactor walls…
but why is density oscillating ?
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Experimental results

0 1 2 3 4 5 6
10

12

14

16

18

20

22

24

26

28

 Pressure (Mass Spectro)
 Cl

2
 density (absorption)

Time (ms)

P
re

ss
ur

e 
(m

T
or

r)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

C
l 2 d

en
si

ty
 (

10
14

 c
m

-3
)

RF OFFRF ON

0.0 0.5 1.0 1.5 2.0
300

400

500

600

700

800

900

1000

1100

1200

1300

Te
m

pe
ra

tu
re

 (K
)

 T from Ar*
 T from Al

Time (ms)

Te
m

pe
ra

tu
re

 (K
)

1000

1500

2000

RF ON
RF OFF

Tg

Tg ≈ 1000 K

2

1
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� An acoustic wave is generated by plasma pulsing !



Experimental results

All measured quantities are oscillating: density, pressure, Temperature !

� An acoustic wave is generated by plasma pulsing !
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Gas is compressed here

What is at the origin of the pressure gradient which launch the wave � Pe fluctuations ? 
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Electron/neutral pressure balance in pulsed ICP
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In ICP the electron pressure Pe is 
non negligible and total pressure is 

the sum of Pe + Pn

In pulsed discharges, Te is rapidly modulated 
rapid fluctuations of Pe � fluctuations of Pn
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2D Fluid simulations : A simple model of acoustic wave

p(t=0) profile

(10% depleted)
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A 2D Fluid model of the afterglow
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Afterglow model: Pn depleted + gas heating 
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� Gaz density increases in the reactor center while pressure decreases close to the walls

⇒ relatively good agreement between model and experiment
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� Neutral depletion caused by electron pressure could be responsible for launching the wave



What about ions ?



Ion flux measurement: principle (in CW plasma)

Blocking
capacitor Pulsed rf

0

-40 V

RF ON: capacitor charges (DC self bias about-40 V)

RF OFF: e- can’t reach the probe polarized at -40V
� Capacitor discharges by collecting ions Bohm flux

� Measurement of the capacitor discharge’s 
current in OFF period � ion flux

Plasma
(CW)

Well known technique introduced by Braithwaite et al  in 1996
Principle: fed a planar probe with by RF bursts through a blocking capacitor
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Current (ion flux) measurement in CW plasmas

We use a direct current measurement system 
through a 1 kΩ serial resistor 
(Booth et al, Rev. Sci. Instrum. 71,  2722)

- RF ON: RF signal propagates through diodes

- RF OFF: capacitor discharge’s current flow 
through resistor and is measured by 
the A/D (triggered by probe pulses)
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� Direct measurement of ion flux from ion saturated current



Current (ion flux) measurement in pulsed plasmas

Issue: several plasma pulses are needed to charge blocking capacitor to - 40 V

� Probe pulsing frequency < Plasma pulsing frequency  (but synchronized)
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Probe: 200 Hz

Plasma: 2 kHz

Pr
ob

e 
R

F
vo

lt
ag

e 
(V

)

0 5

0,0
0,1
0,2
0,3
0,4
0,5

P
ro

be
cu

rr
en

t (
m

A
)

Time (ms)

-50
-40
-30
-20
-10

0

P
ro

be
po

te
nt

ia
l (

V
)

-50
-25

0
25
50

-100
-50

0
50

100

P
la

sm
a

R
F

 (
V

) 
P

ro
be

 R
F

V
ol

ta
ge

 (
V

)
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pulses to trigger probe pulses at f/10



Time-variations of ion flux in pulsed Cl2 plasma 

The ion flux is also strongly oscillating  in the afterglow (and glow) !!!

Correlation with neutral density oscillations ?
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Ion flux at walls is oscillating in phase with accoustic wave ! 

� Thanks to frictions forces the neutral « wind » of the accoustic wave pushes ions back 
and forth towards the reactor walls thus modulating their flux !!!

� The effect is strong in afterglow (ambipolar field is weak) and obvious when the ion 
flux is small

Time-variations of ion flux in pulsed Cl2 plasma 



Amazing observation: the time-variations of the ion flux are 
predominantly driven by the neutral pressure wave and not by ionisation 

� the ON period just « adds » an extra-ion flux on top of it.

At 700 Hz, the system is probably near accoustic resonnace
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Revealing the shape of the ion flux wave caused by the pressure wave

“Supress” ionization contibution
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Conclusions

Pressure waves have been observed in pulsed ICP plasmas

They most probably originate from electron pressure variations, which in turn 
generate a neutral pressure variation

The neutral-ions friction forces then produce ions flux waves
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Afterglow model: Pn depleted + gas heating 

EXP MODEL
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walls) followed by a slower T cooling (attributed to the heat conduction to the walls on the 
millisecond timescale). 
⇒ How fast the gas moves from outer regions toward the central high density volume ?
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� Atoms drift from bottom to middle of the reactor
⇒ gas moves from outer regions toward the central high densityvolume,
and since the gas is much colder near the walls, we observe a rapid cooling of
the gas in the middle of the chamber in the early afterglow
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Ar is introduced in small amount (10 %) in the Cl2 plasma

Tgas is deduced from the Doppler width of an absorption line from either Ar* metastable 
atoms  or Al atoms (in thermodynamic equilibrium with gas)
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Experimental set-up for gas temperature measurement



Experimental evidence: measurement of Al axial velocity by LIF

Doppler profile of Al atoms is measured
simultaneously by L.I.F and absorption in
the afterglow.

LIF is excited by the laser in the axial
direction: if the gas moves vertically the
Doppler profile measured by LIF will be
shifted toward lower wavelength compared
to the absorption (unshifted by symmetry)

In early afterglow the Doppler profile 
measured by LIF is shifted / absorption
⇒ the gas moves from bottom to the top 
of the reactor at about 250 m.s-1 !
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• Signal acquisition synchronized with the plasma pulses: record IT(t) over each pulsing period

• Laser wavelength is scanned slowly (0.5 Hz) compared to plasma pulsing frequency (150 Hz)

⇒ During each plasma pulse the laser wavelength is ≈ constant

⇒ We can reconstruct the Doppler profile at each time during one plasma pulse and thus 
capture the time variations of Tgas

Gas temperature measurement in pulsed discharges
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Experimental evidence: measurement of Al axial velocity by LIF

Radial velocity profile, by absorption

In early afterglow the Doppler profile 
measured by LIF is shifted / absorption

⇒ the gas moves from the bottom to the 
top of the reactor at about 250 m.s-1 !

-6 -4 -2 0 2 4 6
0.00

0.01

0.02

0.03

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

 

 

L
IF

 (
a

rb
.u

n
its

)

Frequency shift (GHz)

Shift (km/s)

 

 

 

A
b

so
rb

a
n

ce
Time in Afterglow

 t=37.5 µs
 t= 50 µs
 t= 62.5 µs
 t= 75 µs

Axial velocity profile, by LIF



Experimental evidence: measurement of Al axial velocity by LIF

Doppler profile of Al atoms is measured
simultaneously by L.I.F and absorption in
the afterglow.

LIF is excited by the laser in the axial
direction: if the gas moves vertically the
Doppler profile measured by LIF will be
shifted toward lower wavelength compared
to the absorption (unshifted by symmetry)

In early afterglow the Doppler profile 
measured by LIF is shifted / absorption
⇒ the gas moves from bottom to the top 
of the reactor at about 250 m.s-1 !
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