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Background/motivation

O Pulsed discharges are promising for advanced etching applications

— necessity to understand the basic plasma phenomena involved when rf power is
time-modulated

O Pulsed discharges are also used to probe radicals’ kinetics: by measuring the
rise/decay rate of the radical's density in the afterglow = surface reactivity
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Experimental set-up: details of DPS 300 mm ICP reactor
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» Radicals defection by BBAS: in the hot/dense region of the ICP plasma

For details see:
APL 94, p 21504 (2009), APL 91, p.231503 (2007),
PSST 19, p34017, (2010), APL 96, p131501 (2010)
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Experimental set-up: details of DPS 300 mm ICP reactor
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> Radicals detection by BBAS: in the hot/dense region of the ICP plasma
» Radical detection + pressure variations by MS: "downstream” and near the reactor walls

» Gas Temperature / axial drift velocity: diode laser AS + LIF (Doppler width of Al and Ar*)

For details see:
APL 94, p 21504 (2009), APL 91, p.231503 (2007),
PSST 19, p34017, (2010), APL 96, p131501 (2010)



Experimental set-up: details of DPS 300 mm ICP reactor
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> Radicals detection by BBAS: in the hot/dense region of the ICP plasma
> Radical detection by MS: "downstream” and near the reactor walls
» Gas Temperature / axial drift velocity: diode laser AS + LIF (Doppler width of Al and Ar*)

> Ton flux: "downstream” and near the reactor walls For details see:

APL 94, p 21504 (2009), APL 91, p.231503 (2007),
PSST 19, p34017, (2010), APL 96, p131501 (2010)



Experimental results
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All measured quantities are oscillating: density, pressure, Temperature !

- An acoustic wave is generated by plasma pulsing |
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All measured quantities are oscillating: density, pressure, Temperature !

- An acoustic wave is generated by plasma pulsing |

What is at the origin of the pressure gradient which launch the wave - P, fluctuations ?



Electron/neutral pressure balance in pulsed ICP

In ICP the electron pressure Pe is
non negligible and total pressure is
the sum of Pe + Pn

In pulsed discharges, Te is rapidly modulated
rapid fluctuations of Pe - fluctuations of Pn

RF ON RF OFF

T A 3eV
~0.1eV

-

v

10mT
8mT

2mT

P,=nKT,




2D Fluid simulations : A simple model of acoustic wave

= Geometry: 2D axisymetric / D=0.5m / L=0.2m S —— e
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A 2D Fluid model of the afterglow
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Afterglow model: P, depleted + gas heating
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= Gaz density increases in the reactor center whilergssure decreases close to the walls

= relatively good agreement between model and experant

- Neutral depletion caused by electron pressure could be responsible for launching the wave




What about ions ?



Ion flux measurement: principle (in CW plasma)

Well known technique introduced by Braithwaite et a/ in 1996
Principle: fed a planar probe with by RF bursts through a blocking capacitor

Planar Blocking
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(1 cm?d)
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(cwW)

RF ON: capacitor charges (DC self bias about-40 V)

RF OFF: e can't reach the probe polarized at -40V
- Capacitor discharges by collecting ions Bohm flux

> Measurement of the capacitor discharge's
current in OFF period > ion flux
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Current (ion flux) measurement in CW plasmas
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- Direct measurement of ion flux from ion saturated current
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Current (ion flux) measurement in pulsed plasmas

Issue: several plasma pulses are needed to charge blocking capacitor to - 40 V
- Probe pulsing frequency < Plasma pulsing frequency (but synchronized)

- Use a frequency divider triggered by the plasma
pulses to trigger probe pulses at /10
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Time-variations of ion flux in pulsed Cl, plasma
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The ion flux is also strongly oscillating in the afterglow (and glow) !l

Correlation with neutral density oscillations ?



Time-variations of ion flux in pulsed Cl, plasma
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Ton flux at walls is oscillating in phase with accoustic wave !

- Thanks to frictions forces the neutral « wind » of the accoustic wave pushes ions back
and forth towards the reactor walls thus modulating their flux Il

> The effect is strong in afterglow (ambipolar field is weak) and obvious when the ion
flux is small



Revealing the shape of the ion flux wave caused by the pressure wave

lon flux (MA.cm™<)
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Amazing observation: the time-variations of the ion flux are
predominantly driven by the neutral pressure wave and not by ionisation
- the ON period just « adds » an extra-ion flux on top of it.

At 700 Hz, the system is probably near accoustic resonnace



Conclusions

Pressure waves have been observed in pulsed ICP plasmas

They most probably originate from electron pressure variations, which in turn
generate a neutral pressure variation

The neutral-ions friction forces then produce ions flux waves
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Afterglow model: P, depleted + gas heating

EXP MODEL
1300 1100 -+ i .
1200 I 1000 k- >'< 4
1100 - 500 ool 5 g
< 1000 i < i 1
< X soof |
© 900 o < .
% 800 = v% 700 abrupt drop .
— ® . 4
g 700 1400 5+ 600 f 200K in 100 ps
o
GE) 600 = 500 F
~ 500 : £ 0l
e —%— Cl.:100/Ar:10 / 10mT / 1400W ]
; Ar: 200 / 10mT / 1400W I 300 b : 3
45777 300 n H n 1 n 1 n 1 n 1 n
00 05 10 15 20 25 30 35 40 -1 0 1 2 3 4 5
Time (ms) iIe ()

= Fast drop during initial 100 us (invasion of high @nsity region by cold gas present at

walls) followed by a slower T cooling (attributed 6 the heat conduction to the walls on the
millisecond timescale).

= How fast the gas moves from outer regions toward thcentral high density volume ?
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Afterglow model: P, depleted + gas heating
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= Atoms drift from bottom to middle of the reactor
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Experimental set-up for gas temperature measurement

Ar is introduced in small amount (10 %) in the Cl, plasma

Tyes is deduced from the Doppler width of an absorption line from either Ar* metastable
atoms or Al atoms (in thermodynamic equilibrium with gas)

Laser wavelength is scanned around the

Plasma pulsed 150 Hz

absorbing line (811.5 nm or 396 nm)

— Doppler profile - T,
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Experimental evidence: measurement of Al axial velocity by LIF
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Doppler profile of Al atoms is measured
simultaneously by L.IF and absorption in
the afterglow.

LIF is excited by the laser in the axial
direction: if the gas moves vertically the
Doppler profile measured by LIF will be
shifted toward lower wavelength compared
to the absorption (unshifted by symmetry)

In early afterglow the Doppler profile
measured by LIF is shifted / absorption
— the gas moves from bottom to the top
of the reactor at about 250 m.s! !



Gas temperature measurement in pulsed discharges

Plasma pulsed 150 Hz
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» Signal acquisition synchronized with the plasma pulses: record I(1) over each pulsing period
* Laser wavelength is scanned slowly (0.5 Hz) compared to plasma pulsing frequency (150 Hz)
— During each plasma pulse the laser wavelength is = constant

= We can reconstruct the Doppler profile at each time during one plasma pulse and thus
capture the time variations of T,



Experimental evidence: measurement of Al axial velocity by LIF
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In early afterglow the Doppler profile
measured by LIF is shifted / absorption

— the gas moves from the bottom to the
top of the reactor at about 250 m.s-! |



Experimental evidence: measurement of Al axial velocity by LIF
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