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AGENDA

• Overview of pulsed plasmas for microelectronics fab rication

• Description of m odels

• Dual Frequency – CCP:  CW baseline 

• Pulsing Dual-Frequency CCP – Pulsing LF, HF, LF & HF

• Pulsed ICPs for photon flux control 

• Internal Pulsing – Beat Frequency of Phase Control

• Startup transients – a form of pulsing.

• Concluding Remarks 
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PULSED PLASMA PROCESSING

• Pulsed plasma materials processing – based on the pr emise that: 

• The time average of instantaneous rates based on ti me varying 
power is not the same as the rates based on the tim e averaged 
power.

• For this premise to be valid:

• Fluxes must respond on time scales less than the pu lse period. 

• Features must "see" a statistically relevant number  of particles 
during the sub-cycle. 

University of Michigan
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PULSED ICP-Ar

• Ar, 10 mTorr

• Overshoot in T e at beginning of low 
PRF cycles.

• Quasi-cw at high PFR

PESM2014



PULSING FOR ION-ION PLASMAS

• Ion-ion plasmas are 
intended to allow negative 
ions to reach wafer, and 
remediate positive 
charging of features.

• Pulsed plasmas in 
electronegative mixtures 
transition from electron-
ion to ion-ion plasmas in 
afterglow.

• Sensitive to PRF, bias

• CCP, 100 mTorr, CF 4, 
150/14/2 MHz, 50% dc

University of Michigan
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SYCHRONIZED PULSED 
ICP & BIAS

• Ar/Cl 2, 10 mTorr

• Pulsed ICP with synchronized pulsed 
bias. 5 kHz, 50% duty cycle.

• Ion energies have distinct sub-cycle 
behavior which reflects:

• Applied Bias

• Plasma potential (measure of T e)

• Interaction of circuit through dc 
bias. 

University of Michigan
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PULSED ICP WITH PULSED RF BIAS IN AFTERGLOW

• Addition of pulsed rf during ICP afterglow produces little change in 
plasma properties.

• RF modulation of plasma potential and DC bias (smal l blocking 
capacitor) during afterglow produce narrower, high energy IED.

• Cl2, 20 mTorr, 800 W, 200 sccm, 100 kHz, 40% duty cycle , 100 V bias.

Animation Slide



PULSING FOR SELECTIVITY

• CHF3/O2/He, 20 mTorr, 
ICP: CW and bias 
synchronously pulsed 

• Etching of Si 3N4 spacers 
with respect to Si. 

• Selectivity requires Si 
oxidation – thickness is 
is reduced using 
pulsing.

• Obtain improvement in 
spacer profile with 
pulsing.

University of Michigan
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CONTROL OF REACTIVE FLUXES

• In this presentation, we discuss results from a com putational 
investigation of controlling reactive fluxes to the  substrate in 
pulsed systems.

• Several varieties of pulsing:

• Pulsing power supplies

• Optimizing circuit interaction

• "Internal pulsing" – beat frequencies?

• Pulsing during startup transients

University of Michigan
Institute for Plasma Science & Engr.PESM2014



HYBRID PLASMA EQUIPMENT MODEL

University of Michigan
Institute for Plasma Science & Engr.
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• The Hybrid Plasma Equipment Model (HPEM) is a modul ar 
simulator that combines fluid and kinetic approache s.

• Radiation transport is addressed using a spectrally  resolved 
Monte Carlo simulation. 

• Intended for smaller pd…

Electron, Ion 
Cross Section 

Database



MONTE CARLO FEATURE
PROFILE MODEL (MCFPM) • The MCFPM resolves the surface 

topology on a 2D Cartesian mesh.

• Each cell has a material identity.  Gas 
phase species are represented by 
Monte Carlo pseuodoparticles.

• Pseuodoparticles are launched with 
energies and angles sampled from the 
distributions obtained from the HPEM

• Cells identities changed, removed, 
added for reactions, etching 
deposition.

PCMCM

Energy and angular 
distributions for ions 

and neutrals

HPEM

MCFPM

Etch rates and 
profile

University of Michigan
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• Poisson’s 
equation solved 
for charging 

ICRP_2014



BASELINE: 
IEADs in CW MULTIFREQUENCY CCPs

PESM2014



REACTOR GEOMETRY

University of Michigan
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• Capacitively coupled plasma 
with multi-frequency rf biases 
on bottom electrode.

• 2D, cylindrically symmetric. 

• Ar plasma: Ar, Ar(1s 2,3,4,5), 
Ar(4p), Ar +, e

• Base case conditions:

• Ar, 30 mTorr, 1000 sccm

• 2 MHz, 300 W; 60 MHz, 300 W

• Etching Chemistry:

• Ar/CF 4/O2=75/20/5, 30mTorr, 500 
sccm

• Actual aspect ratio

(Note: Y:X = 2:1)

PESM2014



PLASMA PROPERTIES

University of Michigan
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● Ar, 30 mTorr, 1000 sccm,
● 300 W, 2 MHz; 300 W, 60 MHz

• Majority of power deposition 
that produces ions comes 
from HF.

• LF power deposition is 
primarily ion acceleration in 
the sheath. 

• Te is fairly uniform in the due 
to high thermal conductivity. 

• Ionization by bulk and sheath 
accelerated secondary 
electrons. 

• With large HF power, bulk 
ionization dominates. 

PESM2014



PLASMA DENSITY vs POWER  

University of Michigan
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● Ar, 30 mTorr, 1000 sccm

• With larger HF power, the electron density signific antly increases 
since HF mainly contributes to ionization and heati ng scales as ω2.

• Increasing LF power has small effect on [e] (throug h ionization by 
secondary electrons) as majority of additional power  results in ion 
acceleration.

• Uniformity increases with higher ionization. 

• Increase HF Power • Increase LF Power

PESM2014



VOLTAGE vs POWER

University of Michigan
Institute for Plasma Science & Engr.● Ar, 30 mTorr, 1000 sccm

• With increase in HF power, V LF decreases due to increase in ion 
current. 

• Increase in LF power produces nominal changes in V HF

• Vdc follows VLF and LF power (sum of V HF and VLF).



VALIDATION: SINGLE FREQ

● Ar, 70 mTorr, 800 sccm
● Exp: Saravanapriyan Sriraman, LAM Research

PESM2014
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• With HF power , both trend and magnitude of Ion sat uration current 
density match with experiment double probe measurem ent. 
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HIGH FREQUENCY POWER

• With increase in HF power 
(300 W to 1200 W), the 
energy width ∆E shrinks and 
double peaks merge towards 
average sheath potential. 

• Increasing in n e produces 
larger current.  

• In order to keep LF power 
constant, the LF voltage 
decreases.

• Vdc also decreases.

University of Michigan
Institute for Plasma Science & Engr.

● Ar, 30 mTorr, 1000 sccm
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LOW FREQUENCY POWER

• The LF power is mainly 
dissipated in the sheath –
the width of IED increases 
with LF power. 

• During the cathodic LF 
cycle, increase in sheath 
potential accelerates ions to 
higher energy.

• During anodic LF cycle, 
sheath potential is 
dominated by HF which is 
unchanged – and so 
modulation of IED persists.  

University of Michigan
Institute for Plasma Science & Engr.

● Ar, 30 mTorr, 1000 sccm

PESM2014



IEADs in Ar/CF 4/O2 vs POWER
• Increase HF Power • Increase LF Power

PESM2014



ETCH PROFILE vs HIGH FREQ POWER

University of Michigan
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• Fixed 2 MHz, 600 W.

• CD=37 nm, Aspect Ratio (AR)= 15

• Etch rate increases with HF power 
inspite of decrease in V LF.

• Higher ion current, higher F/CF x
ratio, reduction in side-wall slope.

Unit: nm
PESM2014

Animation Slide● Ar/CF 4/O2=75/20/5, 
30mTorr, 500 sccm



ETCH PROFILE vs LOW FREQ POWER

• Fixed 60 MHz, 600 W. 
• Etch rate linearly increases with 

LF power due to average ion 
energy increasing.

• Little change in sidewall slope.

University of Michigan
Institute for Plasma Science & Engr.
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● Ar/CF 4/O2=75/20/5, 
30mTorr, 500 sccm

Animation Slide



PULSED DUAL -FREQUENCY
CCPs:  CIRCUIT INTERACTIONS

PESM2014



2 FREQUENCY CCP – BLOCKING CAPACITANCE

• The temporal behavior of the “dc” bias during 
pulsing  depends on the capacitance due to the 
RC charging time.

• Ar/CF 4/O2 = 75/20/5, /CF4/O2, 40 mTorr, 200 sccm
• Lower electrode: LF = 10 MHz
• Upper electrode: HF = 40 MHz

University of Michigan
Institute for Plasma Science & Engr.PESM2014



f(ε) IN PULSED CCP 

University of Michigan
Institute for Plasma Science & Engr.

• Pulse HF

• f(ε) for bulk electrons averaged over 
pulse cycle is distinctly different than 
CW for same average power.

• Typically more of lowest energy and 
highest energy electrons.

• Contributions of secondary electrons 
important in maintaining ionization 
balance.  

• Ar/CF 4/O2 = 75/20/5
• LF = 10 MHz, 500W; HF = 40 MHz, 500W
• PRF = 50 kHz, Duty-cycle = 25%

• [e]

PESM2014

Animation Slide-GIF
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RATIO OF FLUXES: CF 4/O2, DUTY CYCLE

• Flux ratio control is limited if keep power constant .

• With smaller duty cycle, polymer flux ratio is more  reduced 
compared to the others.

University of Michigan
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F O Poly

50%
25%

50%25%

50%

25%

• LF 10 MHz, Pulsed HF 40 MHz, PRF = 100 kHz
• 40 mTorr, CF 4/O2=80/20, 200 sccm

CW

CW

CW

PESM2014

• Flux Ratios:
• Poly = CF x / Ions
• O = O / Ions
• F = F / Ions



PLASMA PROPERTIES:
PULSING LF

Impossible d’afficher l’image.

University of Michigan
Institute for Plasma Science & Engr.

• Pulsing LF produces moderate modulation of 
[e] and T e in the bulk plasma.

• Dynamics of sheath potential adjacent to the 
substrate are large and enable customized of 
ion energy distributions to the wafer

• Ar/CF 4/O2 = 75/20/5, 40 mTorr, PRF = 10 kHz, 
Duty cycle = 25%,  BC = 1 µF, %, VLF=VHF=250 V

f(ε)

Impossible d’afficher l’image.

• ne (1011 cm -3) • Te (eV)

MIN MAX
ANIMATION SLIDE-GIF
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• A small blocking capacitor enables the “dc” bias to  follow the 
transient currents during the pulse period.

• Maximum ion energy = Plasma Potential +V rf – “dc” Bias

PLASMA POTENTIAL AND dc BIAS: LF PULSED

University of Michigan
Institute for Plasma Science & Engr.

• 100 nF • 1 µF

• Ar/CF 4/O2 = 75/20/5, 40 mTorr, PRF = 10 
kHz, Duty cycle = 25%, V LF=VHF=250 V

PESM2014



Impossible d’afficher l’image.

University of Michigan
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ION ENERGY DISTRIBUTION: PULSING LF

• PRF = 10 kHz, Duty cycle = 25%, 
• 2 decades MIN MAX

ANIMATION SLIDE-GIF Angle (degree)
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• IED consists of a low energy portion (LF 
off) and a high energy portion (LF on).

• Dynamics of IEADs depend on BC.  

PESM2014



IEDs vs DUTY CYCLE:  PULSING LF

University of Michigan
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• The high energy peak 
in the IED comes 
from the power-on 
stage.

• The low energy peak 
comes from the 
power-off stage.

• The amplitude of 
each peak can be 
manipulated by duty 
cycle.

• Ar/CF 4/O2 = 75/20/5, 40 mTorr, PRF = 10 
kHz, Duty cycle = 25%, BC = 100 nF

PESM2014



ETCH PROFILE vs. DUTY CYCLE: PULSING LF

University of Michigan
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• 25% • 50% • 75% • CW
Impossible d’afficher l’image.

• With constant voltage, lower dc 
produces lower etch rate.

• At same overetch (100%), 
smaller pulsed dc reduces 
bowing – more polymer per 
energetic ion.

ANIMATION SLIDE-GIF

• Ar/CF 4/O2 = 75/20/5, 40 mTorr, PRF = 10 
kHz, Duty cycle = 25%, BC = 100 nF, 
VLF=VHF=250 V, CD = 22 nm

PESM2014



Impossible d’afficher l’image.

PLASMA PROPERTIES: 
PULSING HF

University of Michigan
Institute for Plasma Science & Engr.

• Pulsing HF produces more modulation of 
both electron density and temperature.

• In the late afterglow, T e increases due to 
lower n e, which thickens the LF sheath.

• CCP transitions to a self-sustained single LF. 

f(ε)

Impossible d’afficher l’image.

• ne (1011 cm -3) • Te (eV)

MIN MAXANIMATION SLIDE-GIF

Impossible d’afficher l’image.

• Ar/CF 4/O2 = 75/20/5, 40 mTorr, 10 kHz, 
dc= 25%, BC = 100 nF, V LF=VHF=250 V

PESM2014
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ION ENERGY: PULSING HF

• PRF = 10 kHz, Duty cycle = 25%
• 2 decades 

• The variation in dc bias is not as large as when 
pulsing LF – still some modulation due to change 
in ion current and spatial distribution.

ANIMATION SLIDE-GIF Angle (degree)
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Impossible d’afficher l’image.

MIN MAX
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IEDs vs DUTY CYCLE: PULSING HF

University of Michigan
Institute for Plasma Science & Engr.• PRF = 10 kHz, BC = 100 nF

• Unlike pulsing LF, the 
energy range of IED 
does not vary much by 
the duty cycle – IED is 
dominated by cw LF.

• Pulsing of plasma 
potential and 
modulation of Vdc
shown in low- and high-
energy components.

PESM2014



ETCH PROFILE vs DUTY CYCLE : PULSING HF

University of Michigan
Institute for Plasma Science & Engr.

• 25% • 50% • 75% • CW

• The sidewall bowing tends to 
be suppressed by pulsed 
power.

• Duty cycles ≥ 75% resemble cw.

ANIMATION SLIDE-GIF

Impossible d’afficher l’image.

PESM2014

• Ar/CF 4/O2 = 75/20/5, 40 mTorr, PRF = 10 
kHz, Duty cycle = 25%, BC = 100 nF, 
VLF=VHF=250 V, CD = 22 nm



Impossible d’afficher l’image.

PLASMA PROPERTIES:
PULSING LF & HF

University of Michigan
Institute for Plasma Science & Engr.

Impossible d’afficher l’image.

f(ε)

• Pulsing both LF & HF at the same time 
produces a larger dynamic range of [e] and T e
in the bulk and boundary.

• The sheath potential adjacent to the substrate 
is also significantly modulated by the temporal 
behavior of the dc-bias.

• Log scale with 2 decades

• Te (eV)

Impossible d’afficher l’image.

MIN MAX

• ne (1011 cm -3)

ANIMATION SLIDE-GIF

• Ar/CF 4/O2 = 75/20/5, 40 mTorr, 10 kHz, 
dc= 25%, BC = 100 nF, V LF=VHF=250 V

PESM2014



• In the afterglow, the plasma potential is nearly ze ro.  The dc-bias 
dissipates with the smaller blocking capacitor.  

• The dc bias remains negative with the larger BC.

PLASMA POTENTIAL & dc BIAS: LF & HF PULSED

• PRF = 10 kHz, Duty-cycle = 25% University of Michigan
Institute for Plasma Science & Engr.

• 100 nF • 1 µF

PESM2014
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ION ENERGY DISTRIBUTION: PULSING LF & HF

• IED thermalized in afterglow with 
small BC – remains at 10s eV with 
large BC

• PRF = 10 kHz, Duty cycle = 25%, 
• 2 decades MIN MAX

ANIMATION SLIDE-GIF Angle (degree)
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Impossible d’afficher l’image.
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• In the afterglow, 
fraction of thermal 
ions onto the substrate 
increases as duty-
cycle decreases.

• In the activeglow, the 
IEADS are similar to 
cw with high energy 
tail due to pulsing

• The relative fraction 
between high and low 
energy is controlled by 
duty cycle.

• PRF = 10 kHz, BC = 100 nF

IEDs vs DUTY CYCLE: PULSING LF & HF

PESM2014



ETCH PROFILE vs. DUTY CYCLE : PULSING LF & HF

University of Michigan
Institute for Plasma Science & Engr.

Impossible d’afficher l’image.

• 25% • 50% • 75% • CW• With smaller duty cycle, the 
sidewall bowing tends to be 
suppressed.

• Due to ion activation of 
polymer deposition, effect of 
duty cycle is not large.

ANIMATION SLIDE-GIF

PESM2014

• Ar/CF 4/O2 = 75/20/5, 40 mTorr, PRF = 10 
kHz, Duty cycle = 25%, BC = 100 nF, 
VLF=VHF=250 V, CD = 22 nm



PULSING FOR CONTROL OF PHOTONS
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• Recent observations of VUV sustained etching in Cl and HBr 
plasmas below accepted ion energy threshold.

PHOTON ASSISTED ETCHING
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• Isolating Ion-assisted and Photon-Assisted Etching of Si in Halogen-
containing ICPs with Mono-energetic ion and Energy Selected 
Photon Bombardment.  PLSC Annual Report 2013

PESM2014
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MODEL GEOMETRY 

University of Michigan
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• Inductively Coupled Plasma.

• RF power (10 MHz) delivered 
by spiral coil and coupled 
through dielectric (quartz) 
window.

• Gas injected from on axis 
nozzle and pumped out at the 
bottom.

• Grounded metallic reactor 
walls elsewhere. 

• Cylindrically symmetric with 
structured mesh.

• Fluxes are collected on the 
wafer.



PULSED ICP: f( ε) – TIME, SPATIAL VARIATION

PESM2014
Animation Slide

• Anomalous sheath and electron-electron collisions a re efficient at 
convecting – conducting energy beyond power depositi on zone.

• Ar/Cl 2 = 80/20, 20 mTorr, 150 W ave, 50 kHz, duty cycle = 15%

Impossible d’afficher l’image.Impossible d’afficher l’image.
Impossible d’afficher l’image.

Impossible d’afficher l’image. = cycle average

University of Michigan
Institute for Plasma Science & Engr.

• Te • f(ε)



• Investigate ability to control ratio of VUV-to-ion flux to substrate 
using pulsed ICP plasma.

PULSED ICP – POWER, Te, ΦVUV

PESM2014
Animation Slide

• Ar/Cl 2 = 80/20, 20 mTorr, 150 W ave, 50 kHz, duty cycle = 15%

Impossible d’afficher l’image. Power Te VUV Photon Flux

MIN MAX 
University of Michigan

Institute for Plasma Science & Engr.



• Repetition rate and duty cycle purposely chosen so that intra-pulse 
variation in charged particle densities is not larg e (< 50%).

PULSED ICP – [e], ION DENSITIES 

PESM2014

Impossible d’afficher l’image.

Animation Slide

• Ar/Cl 2 = 80/20, 20 mTorr, 150 W ave, 50 kHz, duty cycle = 15%

[e] [M+] [Cl -]

MIN MAX 
University of Michigan

Institute for Plasma Science & Engr.



• Photons and ions leave plasma at 
different rates vs duty cycle, providing 
control over coincidence and ratio of 
photon and ion fluxes. 

CONTROLLABLE RATIO OF PHOTON / ION FLUX

PESM2014

• Ar/Cl 2 = 80/20, 20 mTorr, 150 W ave, 50 kHz

University of Michigan
Institute for Plasma Science & Engr.

Impossible d’afficher l’image.

Animation Slide



Impossible d’afficher l’image.

• Although moderately trapped, the transport of 
Ar resonance radiation is significantly less 
diffusive than ions. 

• Since sources are near the coils, aspect ratio 
can be used to discriminate fluxes. 

ASPECT RATIO – TRANSPORT OF IONS vs PHOTONS

PESM2014

Animation Slide

• Ar/Cl 2 = 80/20, 20 mTorr, 
150 W, 50 kHz, duty cycle 
= 15%

MIN MAX 
University of Michigan

Institute for Plasma Science & Engr.



• Varying aspect ratio (height) of reactor provides a nother means of 
controlling the ratio of photon to ion flux. 

PHOTON / ION FLUX vs ASPECT RATIO

PESM2014

• Flux ratios in are more sensitive to aspect ratio i n pulsed plasmas 
due to more tight coupling between excited states a nd photon 
fluxes in cw plasmas.

• Ar/Cl 2 = 80/20, 20 mTorr, 150 Wave, 50 kHz
University of Michigan

Institute for Plasma Science & Engr.
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POSSIBLE CONSEQUENCES: Ar/Cl 2 ETCHING OF Si

• VUV photon fluxes are nearly isotropic.

• Ar/Cl 2 = 80/20, 20 mTorr, 150 W, 10 MHz, 
Bias 10 MHz

• Photon etch probabilities calibrated to 
probabilities for 40 eV ions. [H. Shin et 
al. JVSTA 30, 021306 (2012)]

PESM2014



Ar/Cl 2 PLASMA ETCH 
OF  Si WITH VUV

• Nearly isotropic VUV 
flux reacts laterally on 
feature.

• Reduction in sidewall 
slope with slight 
undercut.

• PR hardening helps 
maintains CD.

• Photon/Ion Flux = 1.3

• Ar/Cl 2 = 80/20, 20 mTorr, 
150 W, 10 MHz, Bias 10 
MHz

• Symmetrized fluxes.

Impossible d’afficher l’image.

Impossible d’afficher l’image.

PESM2014

PR

Si

SiO2

PR

Si

SiO2

Without VUV

With VUV

Animation Slide
University of Michigan

Institute for Plasma Science & Engr.



MANAGING ISOTROPIC VUV FLUXES
• Isotropic VUV fluxes will be problematic during lon g over-etches 

when undercutting may occur.

• These fluxes may be controlled by view angle with t hicker PR.  

• Ar/Cl 2 = 80/20, 20 mTorr, 150 W, 10 
MHz, Bias 10 MHz

Animation Slide

Impossible d’afficher l’image.

University of Michigan
Institute for Plasma Science & Engr.



INTERNAL BEAT FREQUENCY PULSING: 
PHASE CONTROL BETWEEN FREQUENCIES

PESM2014



ELECTRICAL ASYMMETRIC EFFECT (EAE)

• J. Schulze et al , JAP 106, 063307(2009)
• B. Heil et al , J.Phys.D 41 165202(2008) University of Michigan

Institute for Plasma Science & Engr.
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• EAE is the control of the dc bias in a 2-frequency CCP 
through control of the phase between the applied 
fundamental frequency and its 2 nd harmonic.

• Analytic
Model

• Experiment

PESM2014



REACTOR GEOMETRY

University of Michigan
Institute for Plasma Science & Engr.

• Capacitively coupled plasma 
with 15 +3 0 MHz rf biases on 
bottom electrode.

• 2D, cylindrically symmetric. 

• Ar plasma: Ar, Ar(1s 2,3,4,5), 
Ar(4p), Ar +, e

• Base case conditions:

• Ar, 20 mTorr, 50 sccm

• Model: 15 MHz, 100 V; 30 MHz, 
100V

• Experiment: 13 MHz + 27 MHz, 
and voltages adjusted for 
constant ion saturation current.

PESM2014

• Experiments: 
Prof. Steven Shannon, NCSU



● Ar, 20 mTorr, 50 sccm
● ∆Φ = 0PESM2014

University of Michigan
Institute for Plasma Science & Engr.

PLASMA PROPERTIES

• [e] ≈ 3-6 × 1010 cm -3, Te ≈ 3.3 eV , both are close to experiments.

• Nearly equal contributions from bulk ionization and  sheath 
accelerated secondary electrons. 



VALIDATION: SINGLE FREQ. IED vs PRES

PESM2014

University of Michigan
Institute for Plasma Science & Engr.

• Sheath is collisional at 40 mTorr.  Decrease in low  energy tail (due to 
collisions) begins to saturate below 20 mTorr. 

● Experiment

● Ar, 50 sccm, 27 MHz 
● Constant dc Bias = -89 V , Power varied 
● 50 W at 5 mTorr , 150 W at 40 mTorr

● Simulation

● Ar, 50 sccm, 30 MHz 
● Constant dc Bias =-89 V. 



DC BIAS v.s. PHASE SHIFT

University of Michigan
Institute for Plasma Science & Engr.
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● Ar, 20 mTorr, 50 sccm,
● Simulation 100 V, 15 MHz; 100 V, 30 MHz
● Experiment 13 MHz + 27 MHz
● Power to current ratio =0.25

• In order to match with experiment setting, the rf wa veform is 
customized as:

• As phase varying, the dc bias will change according  to EAE theory.

• The mismatch mainly due to the experimental need to  keep I ion_sat
constant and voltages will be modified slightly.  
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• Experiment shows similar translation of the peaks i n IEDs with ∆Φ.

PESM2014

● Ar, 20 mTorr, 50 sccm,
● 13 + 27 MHz, Power / Current =0.25

IED vs PHASE SHIFT:  EXPERIMENT
• With increasing phase difference between 15 and 30 MHz, position 

of maximum in IED changes from high to low to high energy. 



IED vs PHASE SHIFT:  MODEL

University of Michigan
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● Ar, 20 mTorr, 50 sccm, 
● 100V, 15 MHz; 100 V, 30 MHz

• Model shows similar translation of the peaks in IED s with ∆Φ.



SIMULATION vs EXPERIMENT
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• The simulation predicts somewhat broader shifts of peaks than 
observed experimentally. Partly due to small change s in V vs ∆Φ.

PESM2014

● Model: Ar, 20 mTorr, 50 sccm, 
● 100V, 15 MHz; 100 V, 30 MHz
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Impossible d’afficher l’image.
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• Small changes in phase of ω and 2ω, and initial offset, produces 
significant changes in profile – even more subtle wh en considering 
different mass ions.

ETCH GAS MIXTURE: IED, ETCH PROFILES vs ∆Φ

● Ar/CF 4/O2=75/20/5, 20 mTorr, 50 sccm



PULSING – STARTUP TRANSIENT
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STARTUP TRANSIENTS IN PLASMA TOOLS

• As wafer size increases, feature size decreases, an d processing 
time decreases, need for controllable startup (and shutdown) is 
more critical – a form of pulsing. 

• Startup of plasma tool begins with “spot” of plasma , either naturally 
[randomly] occurring, artificially produced or, wit h low pulsing PRF 
in electronegative plasmas, left over from prior pu lse.

• Plasma then “breaks down” and spreads across plasma  tool.

• Photon simulated processes likely important – second ary electron 
emission.

• In a given plasma tool, location and intensity of “ spot” of plasma 
determines spread of plasma through tools.

• Voltages, frequencies, pressures and gases that opt imize 
breakdown and spreading of plasma are not necessari ly the same 
as used in the process.

• “Harsh” conditions that spread across wafer may pro duce 
damage. 

University of Michigan
Institute for Plasma Science & Engr.PESM2014



STARTUP IN DUAL -FREQUENCY CCP

University of Michigan
Institute for Plasma Science & Engr.PESM2014

• Argon, 40 mTorr
• HF = 40 MHz, LF = 10 MHz
• Radiation transport, photon-and-ion secondary elect ron emission.



Impossible d’afficher l’image.

STARTUP IN CCP: ENHANCED BY PHOTO-ELECTRONS  

• Plasma produced radiation enhances spreading of pla sma by seeding 
secondary electrons that produce ionization.

• Ar, 40 mTorr, HF = 40 MHz – 250V, LF = 10 MHz – 275 V. 
University of Michigan

Institute for Plasma Science & Engr.PESM2014

Animation Slide



STARTUP IN CCP: SWEEPING FLUXES AND IEADs  

• Ar, 40 mTorr, HF = 40 MHz – 250V, LF = 10 MHz – 275 V . 
University of Michigan

Institute for Plasma Science & Engr.PESM2014

Impossible d’afficher l’image.

Impossible d’afficher l’image.

Ion Flux

VUV Flux

Ion Energy/Angle Distribution

• During startup, the plasma sweeps across 
wafer. The ion energy distribution is highly 
anisotropic during this transient. 

Animation Slide

Impossible d’afficher l’image.



PRACTICAL MATTERS OF PULSING

• Pulsing can be divided into two modes:

• Features see pulse averaged fluxes

• Features see different sets of fluxes from differen t parts of the 
pulsed cycle (e.g., sub-cycle fluxes)

• Neutral fluxes are, to some degree, averages over p ulsed 
periods. Diffusion times are usually longer than in ter-pulse 
periods for all but the lowest PRFs.

• The distinction between averaged and sub-cycle flux es blurs as 
the feature size decreases. 

• Ions "into the hole" per sub-cycle:

• A = area of feature • d = duty cycle

• Φ = ion flux • ∆t = period, f = PRF

University of Michigan
Institute for Plasma Science & Engr.PESM2014
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LIMIT OF PRF FOR FEATURE SIZE

• If you need "a few" 
ions/feature to "know" that 
the ion flux is uniquely in the 
sub-cycle, what is the limiting 
feature size or PRF for 
“pulsing”?

• Iion = 0.5 mA/cm 2

• d = 50% 

• For sub-20 nm features, 
require PRFs of < 1 kHz

University of Michigan
Institute for Plasma Science & Engr.PESM2014

1 kHz

3 kHz

10 kHz
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CONCLUDING REMARKS

• Pulsing broadens the parameter space available for processing 
optimization:  

• Pulse LF, HF or both, vary BC, pulse ICP with/witho ut 
synchronizing bias, PRF, dc, ….

• R. Gottscho – “A parameter space with millions of 
combinations”

• The breadth and opportunity of pulsing complicates cause-
and-effect analysis – synergistic effects between pa rameters.

• Clearly, some unambiguous trends in shaping IEDs an d 
controlling T e – what is less clear is on the neutral side, effects  
on passivation, photons (!)   

• Many unappreciated examples of pulsing – beating due  to 
phasing between LF, HF, startup transients.

PESM2014



HPEM-EQUATIONS SOLVED -

• Maxwell’s Equations – Frequency Domain Wave Equation
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• Azimuthal antenna currents – retain only E θ, Brz

• Plasma currents
• Collisional ion currents
• Kinetically derived non-local electron currents cap ture 

nonlocal effects.

University of Michigan
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• Electron Energy Distributions – Electron Monte Carlo  Simulation
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• Cycle dependent electrostatic fields

• Phase dependent electromagnetic fields

• Electron-electron collisions using particle-mesh al gorithm

• Phase resolved electron currents computed for wave equation 
solution.

• Captures long-mean-free path and anomalous behavior .

University of Michigan
Institute for Plasma Science & Engr.

HPEM-EQUATIONS SOLVED - ( )φε ,,rf
r
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HPEM-EQUATIONS SOLVED - ( )φ,rN
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• Emission of line radiation in low 
pressure plasmas at frequencies given 
by lineshape function  .

• Homogeneous (natural and pressure 
Lorentzian) and inhomogenous 
(Doppler) broadening combined into 
Voigt profile.

EMISSION OF RADIATION

PESM2014
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• The photon absorption cross section between levels 1 and 2 (A 21
= Einstein A coefficient)

• Line radiation is preferentially absorbed near line  center.  This 
leads to radiation trapping and inverted line emiss ion.

EMISSION, ABSORPTION, INVERSION, TRAPPING

PESM2014
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• The number of emission/absorptions before leaving p lasma is the 
radiation trapping factor , which can be 100s to 1000s, and leads 
to effectively metastable states. 

Quenchinghν



RADIATION TRANSPORT MODEL IN HPEM

PESM2014

• Frequency resolved radiation transport in HPEM is m odeled using a 
Monte Carlo simulation that accounts for partial fr equency 
redistribution (PFR) and radiation trapping.



REACTOR GEOMETRY
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• Capacitively coupled plasma 
with 15 +3 0 MHz rf biases on 
bottom electrode, and 60 MHz 
on top.

• 2D, cylindrically symmetric. 

• Ar plasma: Ar, Ar(1s 2,3,4,5), 
Ar(4p), Ar +, e

• Base case conditions:

• Ar, 20 mTorr, 50 sccm

• Model: 15 MHz, 100 V; 30 MHz, 
100V

• Experiment: 13 MHz + 27 MHz, 
and voltages adjusted for 
constant ion saturation current.

PESM2014

• Dual-frequency set up • Tri-frequency set up

• Experiments: 
Prof. Steven Shannon, NCSU



MULTI FREQ-CCP PLASMA PROPERTIES

● Ar, 20 mTorr, 50 sccm

• Changing ∆Φ in DF-CCP may modify plasma density.

• With addition of 60 MHz, plasma density is stabiliz ed. With electron 
heating scale with ω2, high frequency can dominate ionization.

PESM2014

University of Michigan
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● 15 + 30 MHz ● 15 + 30 + 60 MHz



IEDs in TRI-FREQ CCP
• DC bias EAE effect still occurs with 60 MHz. At min and max dc bias 

phases, same general trend of change in IEDs is see n. 

)sin(100)sin(100

...)sin(100:

260130

15

Φ+++Φ++
++

πωπω
πω

tt

tSimulaton

PESM2014


